

SESSION 1

 Introduction to British farming

What variety of farms are there in the UK?

This map shows what type of farming takes place in different areas of the UK.

What do you think might happen on these different types of farms?

What does the data tell us about the types of farming in the UK and why?

Region	Farmland	Natural	Built on and green urban areas
England	72.9%	14.5%	12.6%
Northern Ireland	72.2%	23.0%	4.8%
Scotland	26.4%	70.6%	3.0%
Wales	59.3%	35.1%	5.6%

Which country has the most farmland?

What interesting things do you notice in this data?

These pie charts do not include labels. They showing land use in England, Scotland, Wales and Northern Ireland.

Can you work out which pie chart represents which country?

Justify your answer.

Region	Farmland (\%)	Natural (\%)	Built on (\%)	Green urban areas (\%)
England	72.9	14.5	8.8	3.8
Northern Ireland	72.2	23.0	3.5	1.3
Scotland	26.4	70.6	2.1	0.9
Wales	59.3	35.1	4.2	1.4

\square Farmland	\square Natural
\square Built on	\square Green Urban

Can you represent the data in a pie chart to show land use across the UK?

Region	Farmland	Natural	Built on and green urban areas
England	72.9%	14.5%	12.6%
Northern Ireland	72.2%	23.0%	4.8%
Scotland	26.4%	70.6%	3.0%
Wales	59.3%	35.1%	5.6%

1. Calculate the UK total percentage of land used per category.
2. Use a ratio table to construct a pie chart.
3. Draw your pie chart with an appropriate title and key.

UK land use by nation percentage of land used per category

Region	Farmland (\%)	Natural (\%)	Built on and green urban areas (\%)	Total (\%)
England	72.9	14.5	12.6	
Northern Ireland	72.2	23.0	4.8	
Scotland	26.4	70.6	3.0	
Wales	59.3	35.1	5.6	
UK Total				

UK land use

 by nation percentage of land used per category| Region | Farmland
 (\%) | Natural
 (\%) | Built on
 and green
 urban
 areas (\%) | Total (\%) |
| :---: | :---: | :---: | :---: | :---: |
| England | 72.9 | 14.5 | 12.6 | 100 |
| Northern
 Ireland | 72.2 | 23.0 | 4.8 | 100 |
| Scotland | 26.4 | 70.6 | 3.0 | 100 |
| Wales | 59.3 | 35.1 | 5.6 | 100 |
| UK Total | 230.8 | 143.2 | 26.0 | 400 |

How might this ratio table help you to construct a pie chart to represent the data?

\% Land use	400	100	1	26	143	231
Angle size $\left({ }^{\circ}\right)$	360°	90	0.9			

Which of these two representations, if any, do you find more helpful? How else could you construct your pie chart?

231	143	26
	400	
360°		

Can you find out?

Background Information

The total area of agricultural holdings is about 23.07 million acres
(9.34 million hectares), of which about a third is arable and most of the rest is grassland. During the growing season about half the arable area is cereal crops, and of the cereal crop area, more than 65% is wheat.

What approximate fraction of the total area of agricultural holdings is:
a. cereal crops
b. wheat

Step one: Break down the information

- The total area of agricultural holdings is about 9.34 million hectares
- Of which about a third is arable and most of the rest is grassland.
- During the growing season, about half the arable area is cereal crops
- Of the cereal crop area, more than 65\% is wheat.

Step 2: Use a bar model to represent the problem

The total area of agricultural holdings is about 9.34 million hectares.

Of which about a third is arable and most of the rest is grassland.

During the growing season, about half the arable area is cereal crops.

Bar model to support thinking

Of the cereal crop area, more than 65% is wheat.

9.34 million hectares							
Arable							
Cereal							

Calculate:

- What fraction/percentage of the agricultural holdings is used for wheat?
- Approximately how much land is this? Show your answer in hectares and metres squared.

How does the size of a hectare relate to your school?

1 Hectare = 10,000m²

Time to investigate

How many m^{2} fit into your school grounds?
How many of your school grounds would fit into a hectare?

What will you need to find out?

How will you find out?

> What do you notice about where different types of farming take place?

Where does farming take place in the UK?

This is a topographic map of the UK. Colours show the elevation of the land - the height above the level of the sea.

Which region of the UK do you live in?

Have you noticed what type of farming takes place in this region?

Why are different farms in different places?

Squashing the soil in technical terms is called compaction. This can be very damaging for the soil because it squashes earthworms which are very important for our soil health. It also prevents moisture and water entering the soil effectively, which is vital for the growth of our crops.

Keeping our soil healthy is a challenge. We test the soil so we can decide whether we need to add extra nutrients. This is to make it healthy and increase the yield so we get much more wheat per acre, or per area, of the field. The fertiliser which we add can also be a problem because it is very expensive and the production of fertilisers can contribute to greenhouse gases.

Our farming

 problems...
Can you engineer some solutions?

After sowing we have real difficulty with pests eating seeds. Birds, small mammals and insects all eat seeds after they have been planted and this can lead to up to 35 out of every 100 seeds planted not turning into crops.

Use the

Engineering
Design Process
to find solutions to the farmers' problems.

Can you make things to make things better?

